

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0134 of 2 June 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

Bonded fastener for use in concrete

CELO Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND

CELO Befestigungssysteme GmbH, Plant2 Germany

28 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-10/0134 issued on 15 December 2016

European Technical Assessment ETA-10/0134

Page 2 of 28 | 2 June 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 28 | 2 June 2021

European Technical Assessment ETA-10/0134

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete" is a bonded anchor consisting of a cartridge with injection mortar ResiFIX VYSF or ResiFIX VYSF Cool and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European **Assessment Document**

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1 to C 3, C 5, C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1, C 4, C 6, C 8
Displacements (static and quasi-static loading)	See Annex C 9 to C 11
Characteristic resistance and displacements for seismic performance categories C1	See Annex C 12 to C 16
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z51579.21 8.06.01-37/21

European Technical Assessment ETA-10/0134

Page 4 of 28 | 2 June 2021

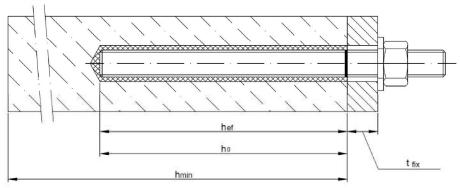
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

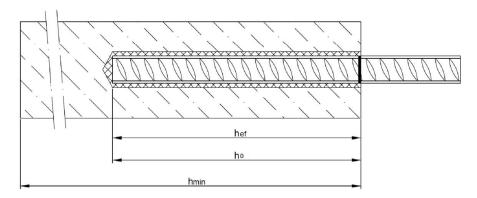
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

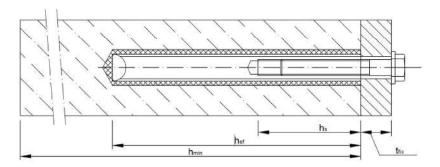
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 2 June 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Installation threaded rod M8 up to M30

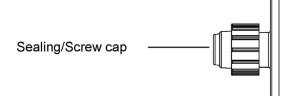
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

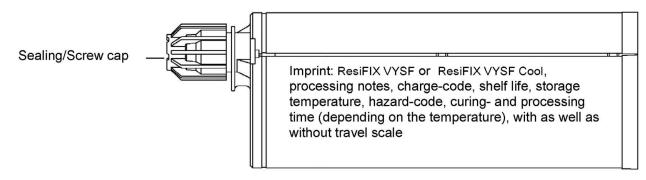
 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

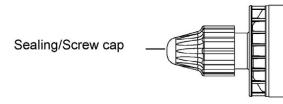
 h_0 = depth of drill hole


 h_{min} = minimum thickness of member

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Product description Installed condition	Annex A 1


Cartridge: ResiFIX VYSF or ResiFIX VYSF Cool

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: ResiFIX VYSF or ResiFIX VYSF Cool, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

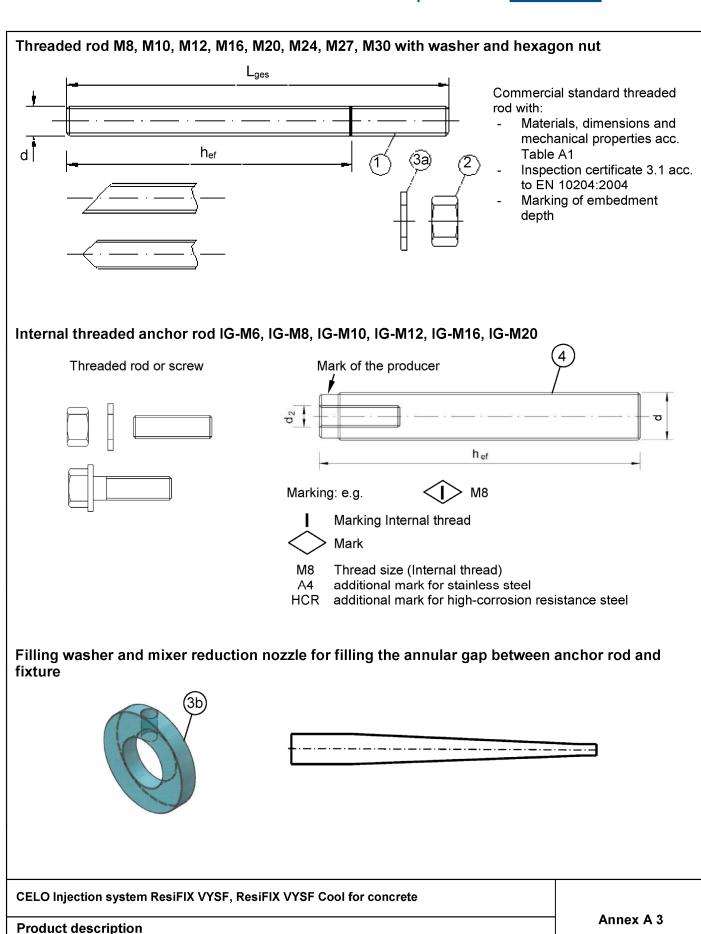
235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

165 ml and 300 ml cartridge (Type: "foil tube")

Imprint: ResiFIX VYSF or ResiFIX VYSF Cool, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer

TAH 18W


CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete

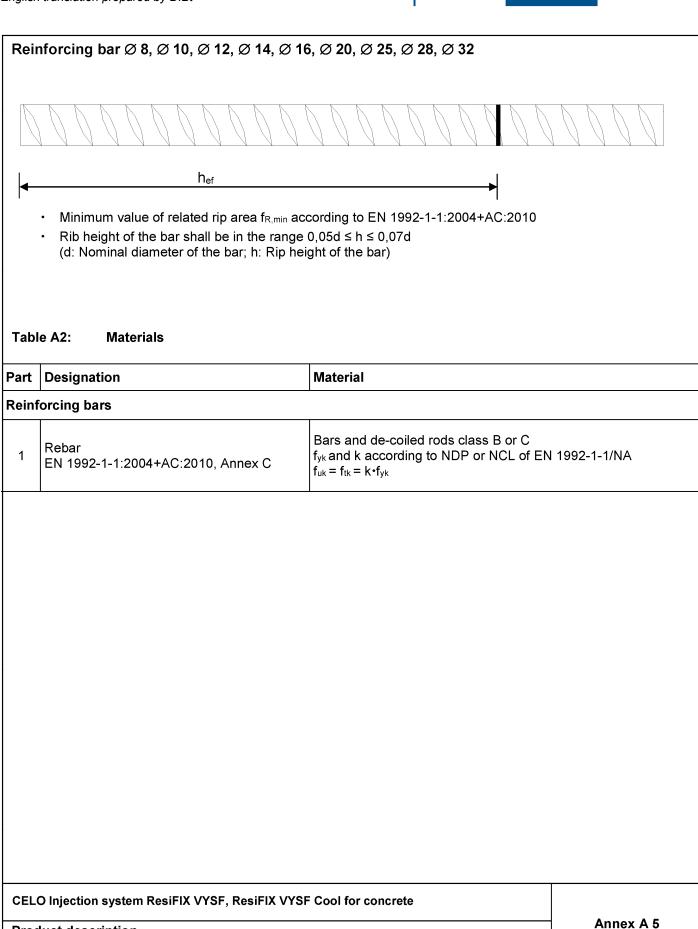
Product description

Injection system

Annex A 2

Z51582.21 8.06.01-37/21

Threaded rod, internal threaded rod and filling washer



art	Designation	Material				
	I, zinc plated (Steel acc. to E			2001)		
		acc. to EN ISO 4042:2018 (1100 10001 0001	4.0.000	
	ot-dip galvanised ≥ 40 µm a nerardized ≥ 45 µm a	acc. to EN ISO 1461:2009 a acc. to EN ISO 17668:2016		I ISO 10684:2004+	AC:2009 or	
SI	lerardized ≥ 45 µm a T)	Characteristic	Characteristic	Elongation at
		Property class		tensile strength	yield strength	fracture
			4.6	f _{uk} = 400 N/mm ²	f _{vk} = 240 N/mm ²	A ₅ > 8%
1	Threaded rod			f _{uk} = 400 N/mm ²	f _{vk} = 320 N/mm ²	A ₅ > 8%
	Tilleaded fod	acc. to		f _{uk} = 500 N/mm²	f _{vk} = 300 N/mm ²	A ₅ > 8%
		EN ISO 898-1:2013		f _{uk} = 500 N/mm²	f _{vk} = 400 N/mm ²	A ₅ > 8%
				f _{uk} = 800 N/mm²	f _{vk} = 640 N/mm ²	A ₅ ≥ 8%
			4	for threaded rod c	lass 4.6 or 4.8	
2	Hexagon nut	acc. to	5	for threaded rod c	lass 5.6 or 5.8	
		EN ISO 898-2:2012	8	for threaded rod c	lass 8.8	
 3а	Washer	Steel, zinc plated, hot-di				
		(e.g.: EN ISO 887:2006,				N ISO 7094:200
3b	Filling washer	Steel, zinc plated, hot-di	p galva			T=
		Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture
<i>/</i> I I	Internal threaded					<u> </u>
4	l anahar rad	t-	5.8	1 t = 500 N/mm²	11 = 400 N/mm ²	IAE > 0%
4	anchor rod	acc. to EN ISO 898-1:2013		f _{uk} = 500 N/mm ² f = 800 N/mm ²	$f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$	A ₅ > 8%
-		EN ISO 898-1:2013	8.8	f _{uk} = 800 N/mm²	f _{yk} = 640 N/mm ²	A ₅ > 8% A ₅ > 8%
Stair	nless steel A2 (Material 1.43	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.45	8.8 67 or 1	f _{uk} = 800 N/mm ² .4541, acc. to EN	f _{yk} = 640 N/mm ² 10088-1:2014)	
Stai:		EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43	8.8 67 or 1 62 or 1	f _{uk} = 800 N/mm ² .4541, acc. to EN 2 .4578, acc. to EN 2	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014)	
Stai:	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.4565	8.8 67 or 1 62 or 1	f _{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic	f _{yk} = 640 N/mm² 10088-1:2014) 10088-1:2014) 14) Characteristic	A ₅ > 8%
Stai:	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43	8.8 67 or 1 62 or 1 5, acc.	f _{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc	f _{yk} = 640 N/mm² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength	A ₅ > 8% Elongation at fracture
Stai:	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.450 01 / 1.4404 / 1.4571 / 1.430 (Material 1.4529 or 1.4565) Property class	8.8 67 or 1 62 or 1 5, acc.	$f_{uk} = 800 \text{ N/mm}^2$ $.4541, \text{ acc. to EN}$ $.4578, \text{ acc. to EN}$ to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ²	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
Stair Stair Iigh	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 n corrosion resistance steel	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.450 01 / 1.4404 / 1.4571 / 1.430 (Material 1.4529 or 1.4565) Property class acc. to	8.8 67 or 1 62 or 1 5, acc. 50 70	$f_{uk} = 800 \text{ N/mm}^2$ $.4541, \text{ acc. to EN}$ $.4578, \text{ acc. to EN}$ $to EN 10088-1: 20$ Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stair Stair Iigh	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 n corrosion resistance steel	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.450 01 / 1.4404 / 1.4571 / 1.430 (Material 1.4529 or 1.4565) Property class	8.8 67 or 1 62 or 1 5, acc. 50 70	$f_{uk} = 800 \text{ N/mm}^2$ $.4541, \text{ acc. to EN}$ $.4578, \text{ acc. to EN}$ to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ²	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
itaii Itaii Iigh	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 ncorrosion resistance steel Threaded rod ¹⁾³⁾	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.450 01 / 1.4404 / 1.4571 / 1.430 (Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2020	8.8 67 or 1 62 or 1 5, acc. 50 70	$f_{uk} = 800 \text{ N/mm}^2$ $.4541, \text{ acc. to EN}$ $.4578, \text{ acc. to EN}$ $to EN 10088-1: 20$ Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
taii taii ligh	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 n corrosion resistance steel	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.450 01 / 1.4404 / 1.4571 / 1.430 (Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2020 acc. to	8.8 67 or 1 62 or 1 5, acc. 50 70 80	$f_{uk} = 800 \text{ N/mm}^2$.4541, acc. to EN .4578, acc. to EN .7 to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stair Stair High	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 ncorrosion resistance steel Threaded rod ¹⁾³⁾	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.450 01 / 1.4404 / 1.4571 / 1.430 (Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2020	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50	$f_{uk} = 800 \text{ N/mm}^2$ $.4541, \text{ acc. to EN}$ $.4578, \text{ acc. to EN}$ to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod c	f_{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f_{yk} = 210 N/mm ² f_{yk} = 450 N/mm ² f_{yk} = 600 N/mm ² lass 50 lass 70	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stair Stair High	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 ncorrosion resistance steel Threaded rod ¹⁾³⁾	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.4501 / 1.4404 / 1.4571 / 1.430 (Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / 1.4	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 307 / 7	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .50 EN .	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN	Elongation at fracture $A_5 \ge 8\%$ $10088-1:2014$
Stair Stair Stair Stair 1	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 ncorrosion resistance steel Threaded rod ¹⁾³⁾	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 307 / 404 / 7	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .50 EN .	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN	Elongation at fracture $A_5 \ge 8\%$ $10088-1:2014$
Stair Stair High	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.4501 / 1.4404 / 1.4571 / 1.430 (Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 307 / 7 404 / 7 1.456	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .50 EN .4578, acc. to EN .4571 / 1.4362 or .50 acc. to EN 10086	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014	Elongation at fracture $A_5 \ge 8\%$
Stair Stair High	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 ncorrosion resistance steel Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.4501 / 1.4404 / 1.4571 / 1.4301 (Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006,	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 307 / 7 404 / 7 1.456 EN IS	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .to EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² for threaded rod composition for threaded rod comp	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014 SO 7093:2000 or E	Elongation at fracture $A_5 \ge 8\%$
Stair Stair Stair Iigh	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006, Stainless steel A4, High	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 307 / 7 404 / 7 1.456 EN IS	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² for threaded rod contracted f	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 8-1: 2014 SO 7093:2000 or E	Elongation at fracture $A_5 \ge 8\%$ $A_0 \ge 8\%$ 10088-1:2014 10088-1:2014 N ISO 7094:20
Stain Stain High	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 ncorrosion resistance steel Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.4501 / 1.4404 / 1.4571 / 1.4301 (Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006,	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 307 / 7 404 / 7 1.456 EN IS	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .to EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² for threaded rod composition for threaded rod comp	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014 SO 7093:2000 or E	Elongation at fracture $A_5 \ge 8\%$
Stair Stair Stair High	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 ncorrosion resistance steel Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006, Stainless steel A4, High	8.8 67 or 1 62 or 1 5, acc. 50 70 80 70 80 307 / 7 404 / 7 1.456 EN IS corros	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .to EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² for threaded rod c for threaded rod c for threaded rod c 1.4311 / 1.4567 or 1.4571 / 1.4362 or 5, acc. to EN 10086 O 7089:2000, EN IS ion resistance stee Characteristic	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014 SO 7093:2000 or E Characteristic	Elongation at fracture $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014 N ISO 7094:20

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

Product description
Materials reinforcing bar

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: -40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod									
Anchor size		M8	M10	M12	M16	M20	M24	M27	M30
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective embedment denth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Maximum torque moment	max T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			$h_{ef} + 2d_0$				
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective embedment depth	h _{ef,min} [mm] =		60	70	75	80	90	100	112	128
Enective embedment depth	h _{ef,max} [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	h _{ef} + 3 ≥ 100	30 mm 0 mm	h _{ef} + 2d ₀						
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Table B3: Installation parameters for internal threaded anchor rod

Size internal threaded anchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Internal diameter of anchor	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of anchor 1)	d _{nom} [mm] =	10	12	16	20	24	30
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	22	28	35
Effective embedment denth	h _{ef,min} [mm] =	60	70	80	90	96	120
Effective embedment depth	h _{ef,max} [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	max T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length min/max	I _{IG} [mm] =	8/20	8/20	10/25 12/30		16/32	20/40
Minimum thickness of member	h _{min} [mm]	٠.	+ 30 mm 00 mm h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Intended Use Installation parameters	Annex B 2

Table B4: Parameter cleaning and setting tools																	
	eterricesconnen.		8		**************************************	A CONTRACTOR OF THE PARTY OF TH											
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA	d _i Brush		d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n directio piston plu								
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1		1							
M8			10	RBS10	12	10,5											
M10	8	IG-M6	12	RBS12	14	12,5		No piston p	lua require	vd.							
M12	10	IG-M8	14	RBS14	16	14,5		NO PISION P	nug require	u							
	12		16	RBS16	18	16,5											
M16	14	IG-M10	18	RBS18		18,5	VS18										
	16		20	RBS20		20,5	VS20										
M20	20	IG-M12	24	RBS24		24,5	VS24	h _{ef} >	h _{ef} >								
M24		IG-M16	28	RBS28		28,5	VS28	250 mm	250 mm	all							
M27	25		32	RBS32		32,5	VS32		250 111111	250 mm	250 111111	230 111111					
M30	28	IG-M20	35	RBS35		35,5	VS35]	_
	32		40	RBS40	41,5	40,5	VS40										

MAC - Hand pump (volume 750 ml)

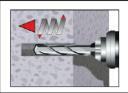
Drill bit diameter (d₀): 10 mm to 20 mm

Drill hole depth (h₀): < 10 d_{nom}

Only in non-cracked concrete

CAC - Rec. compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation VS
Drill bit diameter (d₀): 18 mm to 40 mm

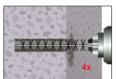

Steel brush RBSDrill bit diameter (d₀): all diameters

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions

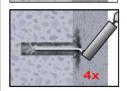
Drilling of the bore hole

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.


In case of aborted drill hole. The drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.

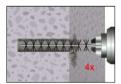
MAC: Cleaning for bore hole diameter d₀ ≤ 20mm and bore hole depth h₀ ≤ 10d_{nom} (uncracked concrete only!)



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump ¹⁾ (Annex B 3) a minimum of four times.

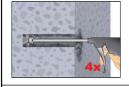
2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.


2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d_{nom} also in cracked concrete with hand-pump.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

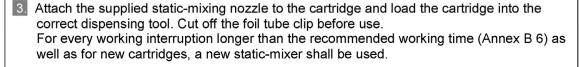


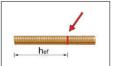
2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

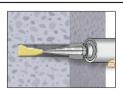
If the bore hole ground is not reached with the brush, a brush extension must be used.

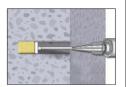
2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.


After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.


CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Intended Use Installation instructions	Annex B 4

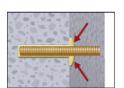
Installation instructions (continuation)




4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Annex B 6.



- 7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth hef > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm

8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 6).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Intended Use Installation instructions (continuation)	Annex B 5

Table B5:	Maximum working time and minimum curing time
	ResiFIX VYSF

Concrete temperature		perature	Gelling- / working time	Minimum curing time in dry concrete 1)		
-10 °C	to	-6°C	90 min²)	24 h ²⁾		
-5 °C	to	-1°C	90 min	14 h		
0 °C	to	+4°C	45 min	7 h		
+5 °C	to	+9°C	25 min	2 h		
+ 10 °C	to	+19°C	15 min	80 min		
+ 20 °C	to	+29°C	6 min	45 min		
+ 30 °C	to	+34°C	4 min	25 min		
+ 35 °C	to	+39°C	2 min	20 min		
	+ 40 °C	;	1,5 min	15 min		
Cartride	ge temp	erature	+5°C to	+40°C		

Maximum working time and minimum curing time ResiFIX VYSF Cool Table B6:

Concre	te tem	perature	Gelling- / working time	Minimum curing time in dry concrete ¹⁾
-20 °C	to	-16°C	75 min	24 h
-15 °C	to	-11°C	55 min	16 h
-10 °C	to	-6°C	35 min	10 h
-5 °C	to	-1°C	20 min	5 h
0 °C	to	+4°C	10 min	2,5 h
+5 °C	to	+9°C	6 min	80 Min
+	+ 10 °C		6 min	60 Min
Cartrido	ge tem	perature	-20°C to) +10°C

¹⁾ In wet concrete the curing time must be doubled.

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Intended Use Curing time	Annex B 6

¹⁾ In wet concrete the curing time must be doubled.
2) Cartridge temperature must be at min. +15°C.

Т	able C1: Characteristic values for st	teel tens	sion re	esistano	e and s	teel sh	ear res	sistanc	e of th	readed	ı
Si	ze			М8	M10	M12	M16	M20	M24	M27	M30
Cr	ross section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
ō	naracteristic tension resistance, Steel failure										
St	eel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel, Property class 5.6 and 5.8			[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
CI	haracteristic tension resistance, Partial facto										
St	eel, Property class 4.6 and 5.6	γMs,N	[-]				2,0)			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,N}	[-]				1,	5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,N}	[-]				2,8	6			
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,N}	[-]				1,8	7			
St	ainless steel A4 and HCR, class 80	Y _{Ms,N}	[-]	1,6							
CI	haracteristic shear resistance, Steel failure	1)							•		
٦	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
rarm	Steel, Property class 5.6 and 5.8	V ^u Rk.s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
eve	Steel, Property class 8.8	V_{Rks}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
out l	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Without lever	Stainless steel A2, A4 and HCR, class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ^o Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
		M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Witl	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
CI	haracteristic shear resistance, Partial factor	2)									
St	eel, Property class 4.6 and 5.6	γMs,V	[-]				1,6	7			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,V}	[-]				1,2	.5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	Y _{Ms,V}	[-]				1,3	3			

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

2) in absence of national regulation

3) Anchor type not part of the ETA

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2:	Characteristic values	for Concrete	cone failure and	Splitting with all kind of action
Anchor size Concrete cone fa	ailuro			All Anchor types and sizes
Non-cracked con-		k _{ucr,N}	[-]	11,0
Cracked concrete)	k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	dge distance 2,0 > h/h _{ef} > 1,3		[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance	•	s _{cr,sp}	[mm]	2 c _{cr,sp}

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

								ic acti	•			
	r size threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30
Steel fa			N	TI-NII			Λ . f	· (or s	ee Tah	lo C1)		
	teristic tension resi	stance	N _{Rk,s}	[kN]	A _s · f _{uk} (or see Table C1) see Table C1							
Partial t	ned pull-out and ο	concrete failure	γ _{Ms,N}	[-]				see 12	ible C i			
	teristic bond resist		ked concrete C	20/25								
	I: 40°C/24°C				10	12	12	12	12	11	10	9
ange	II: 80°C/50°C	Dry, wet concrete			7,5	9	9	9	9	8,5	7,5	6,5
Te ra	III: 120°C/72°C				5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
Temperature range	I: 40°C/24°C		^τ Rk,ucr	[N/mm²]	7,5	8,5	8,5	8,5				
Temp	II: 80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5	N	o Perfo Asse		e
·	III: 120°C/72°C				4,0	5,0	5,0	5,0				
Charac	teristic bond resist	ance in cracked o	concrete C20/2	5			1					
-	I: 40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range	II: 80°C/50°C	Dry, wet concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
nre r	III: 120°C/72°C			[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
perat	I: 40°C/24°C		TRk,cr	[14/11111]	4,0	4,0	5,5	5,5				
Tem	II: 80°C/50°C	flooded bore hole			2,5	3,0	4,0	4,0	No Performance Assessed			e
	III: 120°C/72°C				2,0	2,5	3,0	3,0				
Redukt	ion factor ψ ⁰ sus in	cracked and nor	n-cracked conc	rete C20/25		•		•	•			
nre	I: 40°C/24°C	Dry, wet			0,73							
Temperature range	II: 80°C/50°C	concrete and flooded bore	Ψ ⁰ sus	[-]	0,65							
Tem		hole			0,57							
		1	C25/30						,02			
l======			C30/37	1,04 1,07								
Ψ_{c}	sing factors for con-	crete	C35/45 C40/50						,0 <i>7</i> ,08			
4 C			C45/55	1,09								
			C50/60						10			
	ete cone failure							600 T-	hle C2			
Splittin	nt parameter ng							see 18	ble C2			
Releva	nt parameter							see Ta	ble C2			
	ation factor and wet concrete				1 0				1,2			
	ded bore hole		γ_{inst}	[-]	1,0					o Perfo	ormano	:e
101 11006	ueu pore noie					1	,4			Asse	ssed	
CELO	Injection system F	ResiFIX VYSF, Re	siFIX VYSF Co	ol for conci	rete							
	Performances Characteristic values of tension loads under static and quasi-static action						_	Anne	x C 3			

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm				I			I			
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s •f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]			0,5 •	A _s ∙ f _{uk}	(or see	Table C	1)	
Partial factor	$\gamma_{Ms,V}$	[-]	see Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	N _{el} ∙ f _{uk}	(or see	Table C	(1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]					1,0			
Concrete edge failure										
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm					300mm)		
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0	'		

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Anchor size internal threaded	d anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Steel failure ¹⁾						_				
Characteristic tension resistand	e, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor, strength class 5.8	3 and 8.8	γ _{Ms,N}	[-]		•	1	,5		•	
Characteristic tension resistand Steel A4 and HCR, Strength cla		N _{Rk,s}	[kN]	14	26	41	59	110	124	
Partial factor		γ _{Ms,N}	[-]			1,87			2,86	
Combined pull-out and conci										
Characteristic bond resistance	in non-cracked	concret	e C20/25							
ω <u>I: 40°C/24°C</u>	Dry, wet			12	12	12	12	11	9	
amber at the second of the sec	concrete			9	9	9	9	8,5	6,5	
हु के <u>III: 120°C/72°C</u>	CONTOCUE	TD.	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0	
ညီ ဖြွ ၂: 40°C/24°C	flooded bore	KK,ucr		8,5	8,5	8,5				
ြစ် Ⅱ: 80°C/50°C	hole			6,5	6,5	6,5	No Perfe	ormance A	ssesse	
III: 120°C/72°C	Tiole			5,0	5,0	5,0				
Characteristic bond resistance	in cracked con	crete C2	20/25			•				
1: 40°C/24°C	5 .			5,0	5,5	5,5	5,5	5,5	6,5	
II: 80°C/50°C	Dry, wet			3,5	4,0	4,0	4,0	4,0	4,5	
amber article	flooded bore			2,5	3,0	3,0	3,0	3,0	3,5	
ම සි I: 40°C/24°C		^τ Rk,cr	[N/mm²]	4,0	5,5	5,5	-,-	-,-	-,-	
□ II: 80°C/50°C				3,0	4,0	4,0	No Perf	ssesse		
III: 120°C/72°C	hole			2,5	3,0	3,0	110 1 011	,		
Reduktion factor ψ ⁰ sus in crac	ked and non-cr	acked c	oncrete C	20/25						
	Dry, wet					0,	73			
: 40°C/24°C : auge : aug	concrete and flooded bore	ψ ⁰ sus	[-]	0,65						
	hole			0,57						
		C2	5/30			1.	02			
		C3	0/37				04			
ncreasing factors for concrete		C3	5/45				07			
Ψc			0/50				08			
			5/55				09			
		C5	0/60			1,	10			
Concrete cone failure										
Relevant parameter						see Ta	able C2			
Splitting failure										
Relevant parameter						see Ta	able C2			
nstallation factor										
or dry and wet concrete		γ:	r_1			1	,2			
for flooded bore hole	γinst	[-]		1,4		No Perfe	ormance A	ssessec		

²⁾ For IG-M20 strength class 50 is valid

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 5

Anchor size for internal threade	ed anch	or rods		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Steel failure without lever arm ¹⁾	1									
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61	
Steel, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98	
Partial factor, strength class 5.8 a	γ _{Ms,V}	[-]				1,25				
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ Rk,s	[kN]	7	13	20	30	55	40	
Partial factor		$\gamma_{Ms,V}$	[-]	1,56 2,3						
Ductility factor	Ductility factor k ₇ [-]						1,0			
Steel failure with lever arm ¹⁾										
Characteristic bending moment, Steel, strength class	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325	
	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519	
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]	1,25						
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456	
Partial factor		γ _{Ms,V}	[-]		2,38					
Concrete pry-out failure										
Factor		k ₈	[-]				2,0			
Installation factor		γ _{inst}	[-]				1,0			
Concrete edge failure										
Effective length of fastener I_f [mm]					min (h _{ef} ; 300mi					
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30	
Installation factor γ _{inst} [-]					1,0					

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

2) For IG-M20 strength class 50 is valid

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure				•	•	•	•	•	•	•	•	
Characteristic tension resistance	N _{Rk,s}	[kN]				,	۹ _s • f _{uk}	1)				
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor	γ _{Ms,N}	[-]					1,4 ²⁾					
Combined pull-out and concrete fa	ilure											
Characteristic bond resistance in non	n-cracked con	crete C20/2			•			•				
<u>Ψ</u> <u>I: 40°C/24°C</u> Dry, wet			10	12	12	12	12	12	11	10	8,5	
II: 80°C/50°C concrete			7,5 5,5	9 6,5	9 6,5	9 6,5	9 6,5	9 6,5	8,0 6,0	7,0 5,0	6,0 4,5	
III: 120°C/72°C concrete 1: 40°C/24°C flanded	TRk,ucr	[N/mm²]	7,5	8,5	8,5	8,5	8,5					
1: 40°C/24°C Dry, wet concrete 1: 40°C/24°C 1: 40°C/24°C 1: 40°C/24°C 1: 80°C/50°C			5,5	6,5	6,5	6,5	6,5			ormand	e	
III: 120°C/72°C			4,0	5,0	5,0	5,0	5,0		A556	essed		
Characteristic bond resistance in crac	cked concrete	e C20/25										
<u>Ψ</u> <u>I: 40°C/24°C</u> Dry, wet			4,0	5,0 3,5	5,5 4,0	5,5 4,0	5,5 4,0	5,5	5,5	6,5	6,5	
II: 80°C/50°C Dry, wet Concrete			2,5 2,0	2,5	3,0	3,0	3,0	4,0 3,0	4,0 3,0	4,5 3,5	4,5 3,5	
0 € 1. 40°C/24°C	[⊤] Rk,cr	[N/mm²]	4,0	4,0	5,5	5,5	5,5	,				
II: 80°C/50°C			2,5	3,0	4,0	4,0	4,0			ormand essed	е	
III: 120°C/72°C bore hole			2,0	2,5	3,0	3,0	3,0		A556			
Reduktion factor $\psi^{m{0}}_{ extsf{SUS}}$ in cracked ar	nd non-cracke	ed concrete	C20/2	5								
© I: 40°C/24°C Dry, wet												
Entrange of the second of the	Ψ^0 sus	[-]					0,65					
flooded bore hole							0,57					
		5/30					1,02					
		0/37					1,04					
ncreasing factors for concrete		C35/45					1,07					
Ψc		C40/50 C45/55		1,08 1,09								
		C50/60			1,10							
Concrete cone failure		.,					.,					
Relevant parameter						se	e Table	C2				
Splitting												
Relevant parameter						see	e Table	C2				
nstallation factor												
or dry and wet concrete			1,2				1	,2				
or flooded bore hole	γinst	[-]			1,4					ormand essed	e	
1) f _{uk} shall be taken from the specificati 2) in absence of national regulation		G										
CELO Injection system ResiFIX VYS	SF, ResiFIX V	YSF Cool fo	or cond	rete								
								-	A	ex C 7		

Table C8: Characteristic val	ues of shea	r loads u	ınder s	tatic a	nd qua	asi-sta	tic act	ion			
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•	•	•	•		•	•		
Characteristic shear resistance	V ⁰ Rk,s	[kN]				0,5	0 · A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50 79 113 154 201 314 491 616				616	804			
Partial factor	γMs,∨	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm	·										
Characteristic bending moment	M ⁰ Rk,s	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]			•	•	1,5 ²⁾				
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure		-									
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)					mm)			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]			•		1,0	•			_

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Table C9: Dis	splacement	s under tension load) (thread	ded rod)					
Anchor size thread	led rod		M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concre	ete C20/25 u	nder static and quasi-	static ac	tion						
Temperature range	δ_{No} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range	δ_{No} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete C	20/25 under	static and quasi-stati	c action							
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	105	0,105					
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
II: 80°C/50°C			0,2	255	0,245					
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
III: 120°C/72°C δ _{N∞} -factor		[mm/(N/mm²)]	0,2	255			0,2	245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \cdot \tau; \qquad \qquad \tau\text{: action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C10: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete C20/25 under static and quasi-static action										
All temperature	δ _{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete C	20/25 under	static and quasi-station	c action							
All temperature	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Performances Displacements (threaded rods)	Annex C 9

Table C11: Dis	placements u	ınder tension lo	ad¹) (Intern	al threade	d anchor r	od)			
Anchor size Intern	al threaded a	nchor rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Non-cracked concre	ete C20/25 und	ler static and qua	si-static ac	tion				•	
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049	
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071	
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119	
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172	
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119	
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172	
Cracked concrete C	20/25 under s	tatic and quasi-st	atic action						
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,090			0,070			
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,105			0,105			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,219			0,170			
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255	0,245					
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,219			0,170			
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255			0,245			

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C12: Displacements under shear load¹⁾ (Internal threaded anchor rod)

Anchor size Inte	ernal threaded an	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Non-cracked and cracked concrete C20/25 under static and quasi-static action										
All temperature	δ _{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04		
ranges	δ _{V∞} -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06		

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Performances Displacements (Internal threaded anchor rod)	Annex C 10

Table C13: Di	isplaceme	nts under tensi	on load	1) (rebar	.)							
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Non-cracked conc	rete C20/25	under static an	ıd quasi	-static a	ction							
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic actior	1							
Temperature	$\delta_{\text{N0}} ext{-factor}$	[mm/(N/mm²)]	0,0	90	0,070							
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	105	0,105							
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170							
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255				0,245				
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170				
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255				0,245				

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor } \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C14: Displacement under shear load¹⁾ (rebar)

				,								
Anchor size rein	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Non-cracked concrete C20/25 under static and quasi-static action												
All temperature	δ _{√0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	
ranges	δ _{V∞} - factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04	
Cracked concrete	e C20/25 und	der static and qu	ıasi-stat	ic actior	1							
All temperature	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06	
ranges	δ _{∨∞} - factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

V: action shear load

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete
Performances

Annex C 11

Displacements (rebar)

8.06.01-37/21 Z51582.21

Table	Table C15: Characteristic values of tension loads under seismic action (performance category C1)													
Ancho	r siz	e threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30	
Steel fa	ailure)												
Charac	terist	tic tension resi	stance	N _{Rk,s,eq,C1}	[kN]	1,0 • N _{Rk,s}								
Partial	facto	or		γ _{Ms,N}	[-]				see Ta	ble C1				
Combined pull-out and concrete failure														
Characteristic bond resistance in non-cracked and cracked concrete C20/25														
l: 40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5			
ange	II:	80°C/50°C	Dry, wet concrete	^T Rk,eq,C1	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1	
Temperature range	III:	120°C/72°C				1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4	
perat	I:	40°C/24°C				2,5	2,5	3,7	3,7	No Performance Assessed				
Tem	II:	80°C/50°C	flooded bore hole			1,6	1,9	2,7	2,7					
	III:	120°C/72°C				1,3	1,6	2,0	2,0					
Increas	sing f	actors for cond	crete ψ_{C}	C25/30 to C5	0/60	1,0								
Install	ation	factor		•										
for dry and wet concrete						1,0 1,2								
for floo	ded	bore hole		γ inst	[-]	1,4				No Performance Assessed				

Table C16: Characteristic values of shear loads under seismic action (performance category C1)

				Ι		1				
Anchor size threaded rod		M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm										
Characteristic shear resistance (Seismic C1) $V_{Rk,s,eq,C1}$ [kN] $0.70 \cdot V_{Rk,s}^0$										
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Factor for annular gap	$lpha_{\sf gap}$	[-]	0,5 (1,0) ¹⁾							

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1)	Annex C 12

Table C17: Characteristic value (performance category)		loads u	nder s	eismic	actio	n					
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure											
Characteristic tension resistance N _{Rk,s,eq,C1} [kN]						1,0	• A _s • 1	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	[-]					1,4 ²⁾					
Combined pull-out and concrete fail	γ _{Ms,N} ure	1	•								
Characteristic bond resistance in non-	cracked and cr	acked co	ncrete	C20/25	5						
1: 40°C/24°C			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
1: 40°C/24°C Dry, wet concrete Dry, wet		[N/m	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
1			1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
မို ဗြ ၂: 40°C/24°C	^τ Rk, eq,C1	m²]	2,5	2,5	3,7	3,7	3,7		ام المسلا		_
II: 80°C/50°C			1,6	1,9	2,7	2,7	2,7] '		ormanc	е
III: 120°C/72°C bore hole			1,3	1,6	2,0	2,0	2,0	Assessed			
Increasing factors for concrete ψ_{C}	C25/30 to 0	C50/60					1,0				
Installation factor											
for dry and wet concrete			1,2				1	,2			
for flooded bore hole	γinst	[-]	1,4				No Performance Assessed				

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Table C18: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V _{Rk,s,eq,C1}	[kN]	0,35 • $A_s \cdot f_{uk}^{2}$								
Cross section area A _s [mm ₂₁			50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,52)								
Factor for annular gap $\alpha_{\rm gap}$ [-] $0.5 (1.0)^{3)}$											

¹⁾ fuk shall be taken from the specifications of reinforcing bars

CELO Injection system ResiFIX VYSF, ResiFIX VYSF Cool for concrete	
Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1)	Annex C 13

²⁾ in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required